Università degli Studi di Udine Test di ammissione alla Scuola Superiore Universitaria Anno Accademico 2019/20 Prova Scritta di Chimica

parte I Sviluppare due temi tra i tre proposti

- A) Le reazioni chimiche, il loro bilanciamento e i principi fondamentali del calcolo stechiometrico.
- B) Il concetto di gruppo funzionale nella chimica organica. I gruppi funzionali contenenti uno o due atomi di ossigeno.
- C) L'equilibrio chimico, la costante di equilibrio e il principio dell'equilibrio mobile (principio di Le Châtelier).

parte II *Indicare la risposta corretta*

(risposta corretta = 2 punti, mancante = 0 punti, errata = -0.5 punti)

1) Il sodio bisolfito (NaHSO₃) è un:
A □ solido covalente
B □ solido ionico
C □ solido molecolare
D □ solido metallico
2) Gli elementi appartenenti al secondo gruppo della tavola periodica:
A □ sono gli alogeni
B □ hanno tutti un basso valore di massa atomica
C □ hanno carattere metallico
D □ sono tutti isolanti
3) Mettendo a confronto acqua pura e una soluzione acquosa di saccarosio:
A □ esse bollono alla stessa temperatura
B \square la soluzione acquosa di saccarosio bolle a una temperatura inferiore
C □ la soluzione di saccarosio congela a una temperatura più bassa
D □ la soluzione bolle a temperatura più elevata solo se è satura
4) Indicare quali elementi chimici sono presenti nel potassio permanganato:
A □ K, Mg, H, O
B □ K, Mn, O
C □ K, Mn, O, H
D □ P, Mn, O
5) Dalla reazione tra un acido carbossilico e un alcool si forma:
A □ un'ammide
B □ un etere
C □ un estere
D □ un chetone

6) Gli orbitali atomici 4f:
A □ possono contenere al massimo 10 elettroni complessivamente
B □ sono sette
C □ hanno energia inferiore a quella degli orbitali 4s
D □ possono contenere 3 elettroni ciascuno
7) Nell'atmosfera vi sono 396 ppm di CO ₂ , ciò significa che:
A □ sono presenti 396 molecole di CO ₂ ogni miliardo di molecole totali
B □ ogni 1000 molecole 396 sono di CO ₂
C □ la concentrazione di CO ₂ è 0.396 ppb
D □ la quantità di CO₂ è pari allo 0.0396 %
8) Il gruppo funzionale -C≡N caratterizza:
A □ i nitrili
B □ le ammidi
C □ le azidi
D □ i lattami
9) Nella reazione C + $SO_2 \rightarrow CS_2 + CO$:
A □ la sequenza corretta dei coefficienti stechiometrici è 4,1;2,3
B □ la sequenza corretta dei coefficienti stechiometrici è 5,1;4,2
C □ la sequenza corretta dei coefficienti stechiometrici è 3,2;1,3
D □ la sequenza corretta dei coefficienti stechiometrici è 5,2;1,4
10) Si consideri l'isotopo 137 del cesio (z = 55):
A □ il numero di neutroni è 137, quello dei protoni 55
B □ il numero di protoni è 137, quello degli elettroni 55
C □ il numero di neutroni è 82, quello dei protoni 55
D □ la somma di protoni, neutroni ed elettroni è 137

ri c

11) Sono presenti più atomi di zolfo $[m.a.(H) = 1.01, m.a.(S) = 32.06]$:
A □ in 6.412 g di zolfo elementare
B □ in 0.24 mol di SO ₃
C □ in 5.112 g di H₂S
D \square in 0.15 mol di Na ₂ S ₂ O ₈
12) Una miscela gassosa $N_2/He/SO_2$ esercita una pressione pari a 54.0 atm. La sua
composizione in termini di percentuale volumetrica è 25% N ₂ , 40% He, 35% SO ₂ .
La pressione parziale dell'elio è:
A □ 21.6 atm
B □ 40.0 atm
C □ 20.0 atm
D □ 13.8 atm
13) Il legame H-F deriva dalla combinazione degli orbitali atomici:
A □ 1s dell'idrogeno e 2p del fluoro
B □ 1s dell'idrogeno e 2s del fluoro
C □ 2s dell'idrogeno e 2p del fluoro
D □ 1s di entrambi gli elementi
14) Miscelando in rapporto molare 1:1 NaOH (base forte) e acido acetico (acido
debole) e aggiungendo una moderata quantità di acqua ne risulta una soluzione il cui
pH è:
A \square 7
B □ debolmente acido
C □ debolmente basico
D □ >12
15) Nel metano tutti gli angoli di legame misurano:
A □ 90°
B □ 109.45°
C □ 120°
D □ 135°

i.